Warum JEE meist nur die zweitbeste LOsung ist ...

In unserem aktuellen Projekt ist die Kundenvorgabe, die Implementierung mit JEE-
Standards vorzunehmen.

Es handelt sich um einen Microservice, welcher ,stateless” Informationen aus einer
relationalen Datenbank und einem nachgelagerten REST-Service zusammenstellt.
Als Plattform dient JBoss 6.3. Laut Spezifikation unterstutzt dieser die JEE 6
vollstandig.

Die Projektanforderungen enthalten zunachst keine Besonderheiten, so dass das
Projekt zuversichtlich mit diesen Rahmenbedingungen begonnen wird.

Wahrend der Implementierung ergeben sich allerdings verschiedene
Notwendigkeiten zur Optimierung:

* Asynchroner REST-Zugriff (JAX-RS 2.0):

Beim Zugriff auf den nachgelagerten REST-Service stellt sich heraus, dass dieser ein
Bottleneck darstellt. Hier muss also ein Cache aufgebaut werden.

Der aus dem REST-Service abgerufene Wert, eine Logo-URL, ist fur die
Grundfunktionalitat verzichtbar, so dass ein asynchroner Zugriff fur den Cache-
Aufbau verwendet werden kann.

Der erste Aufruf geht also auf einen Standard-Wert, nachfolgende Aufrufe kdnnen
auf den mittlerweile aufgebauten Cache zugreifen.

JEE 7 ermdglicht asynchrone REST-Aufrufe. Durch Konfiguration des JBoss kann
diese JEE7-Funktionalitat bereit gestellt werden.

(https://dzone.com/articles/jax-rs-20-asynchronous-server-and-client)

e Loschen eines Objektes

Beim Loschen eines Objektes aus der DB stellt sich heraus, dass der remove()-
Aufruf nicht greift, da das Objekt nicht mehr in einem DB-Session-Kontext verankert
ist.

JPA hat hier deutliche Einschankungen gegenuber Hibernate

(s.a. https://stackoverflow.com/questions/912659/what-is-the-proper-way-to-re-attac
h-detached-objects-in-hibernate).

Abhilfe: JPQL-Query. Das ist nach JPA 1.x moglich, fUhrt aber an dem gesamten
Konzept des O/R-Mappings vorbei, da SQL (-ahnlicher) Code im Quellcode auftaucht.

* Loschen von Attributen aus der JSON-Response

Das explizite Parsen von JSON mit dem Jackson Object Mapper aus ist im Projekt gar
kein Problem, Annotations wie @Jsonlgnore werden problemlos verarbeitet.

https://dzone.com/articles/jax-rs-20-asynchronous-server-and-client
https://stackoverflow.com/questions/912659/what-is-the-proper-way-to-re-attach-detached-objects-in-hibernate
https://stackoverflow.com/questions/912659/what-is-the-proper-way-to-re-attach-detached-objects-in-hibernate

Warum JEE meist nur die zweitbeste LOsung ist ...

Beim der deklarativen Verwendung von JAX-RS wird das Ruckgabeobjekt zwar
zunachst einwandfrei als JSON zurlickgegeben - aber die Annotations werden
ignoriert.

Nach einer mehrstindigen Debug-Session

(s.a. http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/index.htm
1)

stellt sich heraus, dass JBoss intern Jackson 1 und nicht Jackson 2 verwendet. Dies
lasst die Wahl, entweder a.) alle JSON-Annotations auf Jackson 1 zurtickzudrehen,
b.) jeweils beide Annotations zu verwenden, c.) Den JBoss mit ca. 10-20 Zeilen so zu
konfigurieren, dass Jackson 2 als Mapper verwendet wird oder d.) mit 3 Zeilen die
Konvertierung Objekt -> JSON-String explizit beim Aufruf auszuprogrammieren. Um
weitere Stunden der Konfiguration zu sparen, sind wir bei Option d.) gelandet, nicht
schon, aber aus meiner Sicht angemessen, um nicht weitere Stunden zu
investieren, um 3 Zeilen Code einzusparen.

Heraus kommt also ein Projekt, welches sehr spezifisch auf die Zielplattform
ausprogrammiert wird. Der Vorteil ist, dass alle Anpassungen durchaus im JEE-
Standard lauffahig sind.

Aber bereits der fehlende Standard fur die JSON-Annotations in JEE 7(!) fuhrt dazu,
dass eine Abhangigkeit in eine konkretes Framework in das Projekt hineinwachst.
Dies qilt aber generell bei der Umsetzung von JEE-Projekten: Der Standard hangt
mehrere Jahre hinterher. Getreu der 80/20 Regel stolst man im Projekt aber immer
wieder auf Aufgaben, die mit aktuellen Frameworks schnell und unkompliziert zu
I6sen sind. Hier muss sich das Team entscheiden:

I. Werden Abhangigkeiten auf spezifische Versionen eines Frameworks in Kauf
genommen?

Il. werden die Méglichkeiten des Application Servers genutzt?

Ill. Oder wird die nétige Funktionalitat des Frameworks nachprogrammiert.

Vor dieser Entscheidung stehen bereits mittelgroRe Projekte, und die saubere
Losung lll. wird aus nachvollziehbaren Grunden sehr selten in Erwagung gezogen.
Damit ist die lupenreine Verwendung des JEE-Standards fur ,real-life” Projekte nur
eine lllusion. Méchte man sich nicht an einen Hersteller binden, so ist I. der Weg fur
eine halbwegs zukunftssichere Losung.

Ist die Entscheidung I. getroffen, aktuelle Frameworks im Projekt zu verwenden, ist
der Weg zu Spring und Hibernate in der aktuellen Version nicht mehr weit.
Damit verwendet man die Vorreiter der nachsten und ubernachsten JEE-Version

http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/index.html
http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/index.html

Warum JEE meist nur die zweitbeste LOsung ist ...

bereits heute.

Mit dem aktuellen Trend zu Microservices wird die Gefahr von Versionskonflikten
aulBerdem ,by design“ noch vermindert.

JEE bleibt damit interessant fUr weniger komplexe Aufgaben, die maximal portierbar
bleiben sollen.

Sobald aber agile Projekte mit unbekannter Komplexitat angegangen werden, ist
meiner Erfahrung nach das Risiko grofSer, die Nachteile beider Welten im Projekt zu
vereinen.

Uber den Autor

Wolff Holtmann

Fur Ihre Fragen zu dem Thema stehen wir gerne zur Verfugung. Sie
erreichen Herrn Wolff Holtmann per E-Mail:

E-Mail: wolff.holtmann@consiness.com

mailto:wolff.holtmann@consiness.com

